
JOURNAL OF COMPUTATIONAL PHYSICS 97, 31 l-336 (1991) 

Implicit Spectral Methods for Wave Propagation Problems 

STEPHEN B. WINEBERG 

KMS Fusion, Inc., P.O. Box 1567, Ann Arbor, Michigan 48106 

JOSEPH F. MCGRATH* 

Mechanical Dynamics, Inc., Ann Arbor, Michigan 48105 

EDWARD F. GABL* 

Department of Physics, Eastern Michigan University, Ypsilanti, Michigan 48176 

L. RIDGWAY SCOTT* 

Department of Mathematics, University of Houston, Houston, Texas 77004 

AND 

CHARLES E. SOUTHWELL * 

Department of Mathematics, Michigan Technological University, Houghton, Michigan, 49931 

Received February 13, 1989; revised March 19, 1990 

The numerical solution of a non-linear wave equation can be obtained by using spectral 
methods to resolve the unknown in space and the standard Crank-Nicolson differencing 
scheme to advance the solution in time. We have analyzed iterative techniques for solving the 
non-linear equations that arise from such implicit time-stepping schemes for the K-dV and the 
K-P equations. We derived predictorcorrector method that retain the full accuracy of the 
implicit method with minimal stability restrictions on the size of the time step. Some numeri- 
cal examples show the propagation of interacting solitons. d 1991 Academic Press, Inc. 

1. INTRODUCTION 

A central issue in inertial confinement fusion is the interaction of laser light with 
normal modes (ion-acoustic or Langmuir) of the plasma [ 11. The time dependent, 
non-linear wave equations which describe these interactions do not, in general, 
have known analytic solutions that can be expressed in terms of arbitrary initial 
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conditions. Consequently, it is necessary to develop numercial methods that will 
yield approximate solutions. 

The general form of the equations is an initial value problem 

L(u) + N(u) = 0 (1.1) 
4x, 0) = u,(x), (1.2) 

where 

u = 24(x, t) (1.3) 

is the unknown function of time t and of the vector of spaces variables x. L is a 
linear differential operator involving time and space derivatives and N is a non- 
linear differential operator involving only space derivatives. 

Our general strategy for numerically approximating the solution u is to use 
spectral methods [2, 31 to discretize Eq. ( 1.1) in space and to employ standard 
methods, such as the Crank-Nicolson numerical integration, to advance the solu- 
tion in time. In this report, we analyze iterative techniques for solving the non- 
linear equations that arise from such implicit time-stepping schemes. For particular 
examples of the system of Eqs. (1.1 ), namely the K-dV and K-P equations defined 
in the next section, we derive predictor-corrector methods that retain the full 
accuracy of the implicit method with minimal stability restrictions on the size of the 
time step. 

The reasons for our choice of discretization techniques are quite straightforward. 
Spectral methods are easy to implement and provide high (infinite-order) accuracy 
when periodic boundary conditions are appropriate, as is the case in many studies 
of basic wave interactions. For the temporal discretization, wave propagation 
problems typically have stringent stability requirements. An A-stable scheme like 
the Crank-Nicolson method (a.k.a. the trapezoidal rule) is an ideal choice among 
second-order formulas. The problem with such an approach is the need to solve the 
nonlinear systems introduced by the implicit method. A standard way to avoid this 
difficulty is to implement an explicit scheme for the non-linear term, while keeping 
the implicit scheme for the linear part. The method we have analyzed for this report 
has many of the benefits of such an approach. That is, it simplifies the solution of 
the implicit equations, yet it does not require the introduction of a second (explicit) 
integration technique. 

We prove rigorously that the solution to the implicit equations can be obtained 
efficiently by a simple prediction-correction technique, although we do not deal 
with the much more complicated question of global convergence estimates for the 
resulting scheme. Such questions are beyond the scope of the present work. Basic 
questions of existence, uniqueness, and regularity are not completely settled for one 
of the sets of equations that we have examined (the K-P equations); so a complete 
analysis of numerical techniques will be a large task. Similarly, a comparison of the 
time-stepping method analyzed here with other time-stepping techniques is beyond 
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our scope since a rigorous comparison would require a complete understanding of 
the convergence properties from a theoretical point of view. 

Our objective is to introduce a method of analysis that can be used for a time- 
stepping technique that would appear to be natural for non-linear wave propaga- 
tion equations. Our goal is to help assess the viability of such a method for a given 
wave propagation problem. We are currently examining the extension of such an 
analysis to higher-order, A-stable time stepping methods, such as the implicit 
Runge-Kutta schemes. 

2. WAVE PROPAGATION EQUATIONS 

There are several wave propagation equations that can be effectively discretized 
via spectral methods. These include the equations of Korteweg-deVries (K-dV) 
type (in moving coordinates) [4], 

u, + Q(u), + %zxr = 0, 

and the equations of the Kadomtsev-Petviashvili (K-P) type, 

(2.1) 

(u, + @(uL + %xX)x f U”.” = 02 (2.2) 

which are to be described in this paper. Note that, in the latter case, there are two 
families of equations, one for each sign [S]. For the classical K-P equation, one has 
Q(u) = $4’. 

The Fourier transform F of Eqs. (2.1) and (2.2) can be written in the form 

u,+f(u)+w(K)u=O, (2.3) 

where u := F(u) and the spectral variable is denoted by K= (K,, . . . . &) with d= 1 
for Eq. (2.1) and d= 2 for Eq. (2.2). (Note that the symbol := indicates a definition.) 
The function f for both Eqs. (2.1) and (2.2) is of the form 

f(u)(K) := iK,F(@[F-l(u)]), (2.4) 

where F-’ denotes the inverse Fourier transform and i is the imaginary unit. 
The dispersion relations are 

and 

w(K) := -X3 (2.5) 

w(K,, K2) := - iK: + i(Ki/K,) (2.6) 

for the K-dV and the K-P equations, respectively. Other wave equations, such as 
the Klein-Gordon (K-G) equation, can also be cast in this form. However, the 
K-G equation involves second-order derivatives in the temporal variable. Hence, it 
must be written as a system of two equations to take the form of Eq. (2.3). 
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3. SPECTRAL (SPATIAL) DISCRETIZATION TECHNIQUES 

Equations of the type (2.3) can be discretized effectively by utilizing the discrete 
Fourier transform given by 

F,(u)~ := 1 uJ e2niJ.K, 

where the summation (and the range of the variable K) extends over the discrete 
lattice 

2, := { (Jl) . ..) Jd):-~n,~J*d~n,-l,m=l,.. 4 (3.2) 

and 
n := (n,, . ..) rid). (3.3) 

The subscript J in Eq. (3.1) is used to indicate the coefficient 

UJ := U(XJ,) . ..) xfg t) (3.4) 

and the subscript K means the left-hand side is evaluated at (K, . ..) Kd). Of course, 
J. K := J1 K, + . . . + JdKd, the dot product of J and K. 

The discrete inverse transform is given by 

where 

(3.5) 

c=(2nr+1)(2n,+1).~.(2n,+l) (3.6) 

and again the summation is over Z,. 
With the discrete Fourier transform F,, Eq. (2.3) becomes a system of 

(n, n2 . . . nd) ordinary differential equations, namely, 

(u,), + .fn(utJ + won = 0, (3.7) 

where 

‘K := F,(u), (3.8) 

and 

(3.9) 

in place of Eq. (2.4). Finally, to obtain a numerical solution for the initial value 
problems (2.3), we must convert the initial data to periodic form (perhaps by 
truncation to zero away from the region of interest) and solve the discrete 
equations (3.7) and (3.9). 
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4. A COMPATIBILITY CONDITION FOR THE K-P EQUATION 

Before discussing numerical techniques for solving ordinary differential equations 
of this type, we have some comments to make on the unusual form of the K-P 
equation. The dispersion relation (2.6) was derived by dividing the Fourier trans- 
form of Eq. (2.2) by iK,. One may well wonder why this is justified. The only 
apparent problem arises when K, # 0 but K, = 0. For a smooth solution u to 
Eq. (2.2), we obviously must have 

F(u)(O, K2) = 0. (4.1) 

That is, F(U) must vanish on the K,-axis in frequency space, with the possible 
exception of the origin. 

In the linear case (set @ to zero temporarily), the Fourier transform of the 
solution to Eq. (2.2) can be written as 

u(K) = u. (K) e - *‘(K)‘, (4.2) 

where u,, is the Fourier transform of the initial data uO. Note that when viewed as 
a function of K,, the multiplier 

e -w(E,K2)1 = &r e *IK:(rIE) (4.3) 

converges weakly to zero as E tends to zero (for fixed t > 0). Also, the non-linear 
function f given by Eq. (2.4) vanishes when K, = 0. Thus, arbitrary initial data 
evidently evolves instantly into a solution satisfying (4.1) in a weak sense, even if 
u0 does not satisfy (4.1). 

In the latter case, v = F(U) will be highly oscillatory, implying that u decays 
slowly in the spatial domain. Loosely speaking, this would indicate that any lack 
of satisfaction of the compatibility condition (4.1) at t = 0 would be equilibrated 
instantly by long range effects in the spatial domain. This places severe limitations 
on the spectral discretization approach unless one explicitly truncates in the spatial 
domain at each time step, which corresponds to a smoothing in the K-variable. 

Any discretization, such as replacing F by F,, for finite n, results in an implicit 
smoothing. To understand in detail what effect this has on the resulting 
approximate solution, in the case where Eq. (4.1) is not satisfied for the initial data 
uO, requires detailed analysis beyond the scope of the work carried out for this 
report. In view of the above, we interpret Eqs. (2.3) and (2.4) to mean that 
v(K,, K,, t) = 0 for t > 0 and K, = 0. This avoids the ambiguity caused by the fact 
that ~(0, K2) is undefined. 

5. TEMPORAL DISCRETIZATION TECHNIQUES 

A standard spectral analysis of ordinary differential equations of the form (3.7) 
shows that the linearized problem will have eigenvalues on the imaginary axis 
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extending to a maximum modulus of O(ln13). See Eq. (4.3), for example. For the 
K-P equation, a more precise bound may be given, namely a modulus less than 
n: + nz. In terms of the spatial discretization parameter Ax := l/In\, the location of 
the eigenvalues impose a restriction on the time step At for explicit methods. Thus, 
At must be of O(Ax3), an unacceptable size even for, say InJ = 128. Note that in 
multiple dimensions, the norm of n is taken to be 

InI := max(n,, . . . . nd). (5.1) 

Implicit methods allow one to avoid the severe time step restriction, although an 
additional level of complexity is untroduced. The Crank-Nicolson scheme 

u;+‘-u;;+q [fn(U;+l)+w(K)u;+l + f, (UZ) + w(K) u”,] = 0 (5.2) 

is an implicit method that involves solving a non-linear equation for urn+’ at each 
time step. With the explicit dependence on K suppressed, the system (5.2) can be 
rewritten as 

U -+l+$ [fn(Um+l)+WUm+q=g, (5.3) 

where 

At 
g := urn - 1 [f, (urn) + WUrn]. (5.4) 

Equation (5.3) can be solved in a number of ways. Perhaps the simplest is lixed- 
point iteration, which in its most direct form reads 

Unfortunately, convergence of this iterative method would require At to be of 
O(Ax3) just as in the case of explicit time-stepping, so we would not have gained 
anything. 

Alternatively, the linear part of system (5.2) can be inverted explicitly yielding 

[~+~,(K)]u~~‘=a~-~[l,(u”,“)+fn(u;)+~(~)~”:] (5.6) 

and, since w(K) is purely imaginary, the iteration 

potentially has a much smaller spectral radius. 
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With the definition (3.9), Eq. (5.7) may be rewritten in the form 

u~+l..‘l=-iK,~[l+~w(K)]~‘F.(BIF;’(”’;I1’),)+G;, 

=z(K)F,J@[F;‘(u”,+~~~)])+G~, (5.8) 

where 

z(K) = 
-iK1 (At/2) 

1 + (At/2) w(K) (5.9) 

and 

lz(K)I 6 C(n, At). (5.10) 

That is, the modulus of z is bounded by a quantity that depends only on the 
number of points in the mesh and the time step. The constant G, in Eq. (5.8) 
contains the terms from Eq. (5.7) that are invariant during the iterative evaluation 
of Eq. (5.8). Thus, 

G,:=[L+$v(K)]-‘( u;-+f [fn(z$!)+w(K)u;] . 
> 

With the dispersion relation (2.5) for the K-dV equation, we have 

z(K)=-iK,$(I-$iK:)‘=-(AijZ)213(~/(l+i’)), (5.12) 

where 

and 

z :=iT (5.13) 

(5.14) 

From this definition, T is real and positive. Also, 

1+r3=1-iT3. (5.15) 

Thus, 

T2 
(1 + iT3)( 1 - iT3) 

T2 <‘22/3 
=l+‘3 

(5.16) 
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for any value of T. Therefore, 

[z(K)1 d C(At) :=g ($) 
213 

(5.17) 

which implies that the rate of convergence of the iterative scheme (5.7) improves as 
At goes to zero. 

Similarly, for the -uyY case of the K-P equation, substituting Eq. (2.6) into 
Eq. (5.9) yields 

z(K)=-iK,$ l-+K:+K:iK,) 
[ 1 

=-(fy3T/(l+r'(l+$)), -' 
where r is defined as before by Eqs. (5.13) and (5.14). Since 

(5.18) 

(5.19) 

the bound (5.17) holds in this case as well. However, in the case of the +uYv term 
in the K-P equation, the terms in the dispersion relation can cancel, yielding more 
complicated behavior. One has 

z(K,,K,)= -iK,$ 1-i$(K:-K$IK,) 1 
-1 

(42) lK,l 
Iz(K” K2)1 = [ 1 + (At2/4Kf)(K;Z _ K;)2] l/2’ 

(5.20) 

(5.21) 

Thus, 

Iz(K, 2 Kz)l G (A@) n, 

for all I K1l < n, and K, arbitrary. 

(5.22) 

The inequality (5.22) is sharp if n, > nf since equality is achieved when K, = n, 
and K2 = n:. However, when n2 < n:, the estimate can be improved as stated in the 
following theorem. Since the K-P equation arises as a model for the propagation 
of waves primarily in the direction of the first independent variable with only a 
secondary variation with respect to the other independent variable, it is in fact 
natural to expect n2 to be much less than n f in typical applications. Figure 5.1 
shows the first quadrant of (K,, K,) space for which the inequality (5.22) applies. 
The theorem establishes additional estimates for Iz\ that apply to the (K, , K,) space 
for which the first quadrant is illustrated in Fig. 5.2. 
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“2 - 

2 
"1 - 

0 < K, Q n, 

0 I 
0 “1 

FIG. 5.1. The estimate (5.22) (or 5.23a) is sharp in (K,, K2) space when nz > n:. 

THEOREM 5.1. The maximum modulus of the amplification factor z(K, , K2), 
defined by Eq. (5.20) for the K-P equation with the +u.,. term, is bounded bJj the 
estimates 

i 

$Atn,, in general (5.23a) 
max Jz(K,, K2)1 d $ At213( 1 + 22’3)“4, if n2<nfandAt<n;3/2 (5.23b) 
KI. Kz 

f At ni/‘( 1 + 22/3)1’4, if n,dntandAt>n;3/2, (5.23~) 

where the maximum is taken over the spectral variables 1 K, 1 < n, and 1 K,I < n2. 

Proof: Inequality (5.23a) has already been established. For inequalities (5.23b) 
and (5.23c), we show first that the maximum occurs on the boundary of the region 
defined by 0 < K, d n, and 0 d K2 d n2 d nf as shown in Fig. 5.2. The analysis can 

n2- 

0 < K, =S n2 

0 I 
0 "1 

FIG. 5.2. The estimates (5.23b) and (5.23~) provide bounds for (z(K,, K,)J when nz < nf. 
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With n,<nf, the minimum value H is achieved when K2 =n,. Therefore, the 
maximum value of Iz( over the region defined in the expression (5.30) satisfies 

M,~max{Jz(K,,n,)l:K,~nn,). (5.32) 

Along the boundary K, = n,, Eq. (5.27) implies that jz[ is a maximum when 

or 

Let 

K:---$Kf--nl=O. 

c=K:-n:. 

Then, from Eq. (5.21), 

lz(K,> n2)12 = 
(At2/4) K; 2 

1 + (At2/4K;)e2 
d if- (n; + &)l12. 

4 

From Eq. (5.34), 

KT = 2 At-’ + nz/Kf 

which implies 

~2, 2’13 At-z/3 1, 

So, at the roots of Eq. (5.34), 

E=KT-n:= 2Kf 2 2213 

At2(K~+n:)‘dtZK:‘At4!3’ 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

Combining inequality (5.39) with inequality (5.36) yields 

Iz(K,, n2)l Q f At(n: + &)‘I4 < 4 At(n: + 22’3 Atp4’3)1’4. (5.40) 

On the one hand, if At < n; 3’2 then inequality (5.40) implies , 

rn? Iz(K,, n2)l < $ At213( 1 + 22’3)1’4. (5.41) 

Inequalities (5.32) and (5.41) imply the estimate (5.23b) which has the same order 
of convergence in At as stated in inequality (5.17) for the K-P (+ uYY) equation and 
the K-dV equation. On the other hand, if At 2 n;3/2, inequality (5.40) implies 

rn: Iz(K,, n2)1 < i At ni”( 1 + 22’3)“4 (5.42) 
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which, along with inequality (5.32), yields the estimate (5.23~). This completes the 
proof of Theorem 5.1. 

The result provides genuine restrictions on A? for the K-P (+ uYY) equation. 
However, in the worst case, the requirement is only that 

Atmin{n,, IZ:‘~} (5.43) 

be sufficiently small. 

6. PREDICTOR-CORRECTOR SCHEMES 

Based on the analysis in Section 5, the Crank-Nicolson discretization provides 
efficient predictorcorrector schemes that retain second-order accuracy for both the 
K-dV and the K-P equations. Perhaps the simplest approach uses the result from 
the previous time step as the initial guess for the non-linear iteration. That is, set 

and re-evaluate 

OK 
m + 1.0 = vm 

K (6.1) 

x up- 
( 

“2’ [fn(V;+l.r I+ fn ($2 + w(K) CJ > (6.2) 

for r = 0, 1, . . . . R - 1. Then set 

and increment m. 

OK 
m+l=vm+l,R 

K (6.3) 

With R = 2, the final iterate urn + 1,2 for both the K-dV and the K-P ( -uY,) equa- 
tion will be an approximate solution to Eq. (5.6) that is accurate to order O(At7’3). 
Thus, second-order accuracy is retained for Eq. (5.6). This level of accuracy is 
achieved because the initial guess (6.1) is accurate to order O(At) and each iteration 
decreases the error by a factor of O(At2/3). For the K-P (+u,) equation, each 
iteration decreases the error by a factor of O(At213) if At< nap’*, or at worst by 
O(At min(n,, n:/2}) if At 3nF3’*. Thus, 

At 6c max{nL2, n;‘} (6.4) 

implies that 

(At min{n,, n:“})‘< c At maxIn;*, n;‘} min{nT, n2} 

=cAt (6.5) 
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and, therefore, Eq. (6.2) achieves second-order accuracy when R = 2. An interesting 
illustration of the quadratic convergence is included with the numerical examples in 
Section 9. 

After several time levels have been computed, an extrapolation scheme can 
produce a better initial guess urn + ‘3’. For example, a stable, higher order predictor 
is a straightforward task when the time step is constant (which is not at all 
necessary computationally). If the predicted (extrapolated) value urn+ I,’ is already 
good to O(dt2), then the computed approximation to the solution of Eq. (5.6), 
urn+ ’ will be accurate to O(dts’3) for the K-dV and K-P (-z+“) equations, and for 
the K-P (+u,,) equation if At d n; 3’2. If At >n;3’2, then the restriction (6.4) 
ensures that the solution will retain second-order accuracy for the K-P ( +z+!) 
equation. Less work is required for the iteration method that begins with an 
extrapolated estimate than for Eq. (6.1) but it also requires more storage. In any 
case, Eq. (6.1) would still have to be used for the initial time step. 

Finally, let us remark tht the scheme defined by Eq. (6.1) and 

is only first-order accurate in time and therefore should not be used. 

7. JACOBIAN OF THE NON-LINEAR SPECTRAL APPROXIMATION 

Another approach to solving Eq. (5.3) is via iterative methods, such as Newton’s 
method, that utilize differential information concerning the relevant non-linear 
operator. Moreover, the detailed analysis of an iteration scheme such as (5.8) 
requires calculating the Jacobian. For these reasons, we indicate here how such 
Jacobians can be calculated easily. 

To be precise, let us consider the function 

G(u) := F,(@[F;‘(u)]). (7.1) 

To calculate the Jacobian of G, we recall that 

J,(u)*= lim G(” + tX)-G(u) 
t-0 t (7.2) 

Expanding, we see that (assuming the function @ in Eqs. (2.1) and (2.2) is C’) 

G(u+ tX)=F,(@[F;‘(u+ tX)])=F,(@[F,-l(u)+ tF,-l(X)]) 

=F’,(@[F,-‘(u)] + tJcdF;‘(u)] F;‘(X)+o(t)) 

= G(u) + tF,,(J, [F,-‘(u)] F,-‘(X)) + o(t), (7.3) 
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where J@(u) denotes the Jacobian of the mapping @(u)~ := @(uK). That is, it is the 
diagonal matrix [@‘(uK) 6,,], where d5, denotes the Kronecker delta. Therefore, 

J,(o)X=~~;,(~‘CF,‘(uK)l L~,‘(W. (7.4) 

Although Eq. (7.4) does not give us an explicit formula for a matrix representa- 
tion for .ZF(u), it does allow us to compute its action quite efficiently, namely, via 
an inverse transform applied to X, multiplication by the function @‘(F;‘(u,)) in 
the spatial variable, and transforming back to the spectral space. Also, since F, is 
an isometry on l2 (up to a multiplicative factor that is cancelled by F; ’ ), we find 

IlJ,(uN,= IIWCK’(~dl ~,,)l/z 
=max{)@‘[F;‘(uK)]I:KEZ,}=: II@'[F;'(u)]II,. (7.5) 

We can apply this analysis to bound the error in the iterations defined by 
Eq. (5.7) in which u plays the role of the Fourier transform of various approxima- 
tions to the solution U. Then the maximum in Eq. (7.5) corresponds to the I, norm 
of CD’ applied to the discrete solution. Thus, we can assert the following result. 

THEOREM 7.1. The fixed-point iteration scheme (5.7) converges in the l2 norm 
with an error asymptotic to 

(C(4 At) /I@‘(~m+‘)/lm)r (7.6) 

(or better) as r + 00, where C(n, At) is defined in the inequality (5.10) for both the 
K-dV and the K-P ( -uYv) equations and by the rihgt-hand side of Eqs. (5.23a), 
(5.23b), and (5.23~) for the K-P (+u,) equation. 

We note that the expression (7.6) only provides a local estimate of the accuracy 
of the approximate solution to the implicit time-stepping equation as opposed to a 
global estimate for the overall scheme. The latter would require rigorous error 
estimates of the global time-stepping error, something which is beyond the scope of 
this paper. On the other hand, our numerical experiments in Section 9 indicate that 
the estimate (7.6) can be useful in predicting the number of corrector steps that will 
lead to a significant improvement in the global error. 

8. NEWTON'S METHOD 

To solve Eq. (5.3) via Newton’s method requires inversion of a Jacobian map- 
ping. With the definition (3.9), we see that the mapping to be inverted is of the form 
Z + zG, where G, defined by Eq. (7.1), is the function studied in the previous section. 

The Jacobian of this mapping is Z + diag(X) .ZF(u). In the cases studied above in 
which the maximum of 1x1 is small, this mapping will certainly be invertible. 
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However, it would be inefficient to invert it by direct methods because it is a full 
matrix. On the other hand, it is easy, in view of Eq. (7.4), to compute the action 
of I+ diag(X) JF(o). Therefore, methods such as conjugate gradients can be 
employed efficiently to invert the Jacobian. 

In any case, it is not at all clear that Newton’s method would be cost effective 
when compared with the predictor-corrector schemes indicated previously. 
However, it is conceivable that it could be more efficient for large time steps and 
at t = 0, when no previous time history is known. 

9. COMPUTER SIMULATION 

We have written a computer code that applies the spectral method to 
the K-P (+u,) equation (2.2) as well as to the K-dV equation (2.1) and the 
K-P ( -uu,,) equation (2.2). A fast Fourier transform package is implemented in 
the program and the user can select either fully implicit or Crank-Nicolson time 
differencing. The code employs a predictor-corrector iteration scheme for the 
non-linear terms. 

9.1. Solution of the K-dV Equation 
We applied the code using the Crank-Nicolson option with one step of the 

predictor-corrector to the K-dV equation (2.1) with 4(u) = -3~‘. That is, we have 
evaluated Eqs. (6.1), (6.2), and (6.3) with R = 1. We chose initial values that yield 
a known analytic solution [6]: For two solitions not close to a collision, the initial 
values are 

u(x, 0) = -2rf sech2(y, -A) - 2ri sech2(y2 + A), (9.1) 

where A=tan-‘(rl/r2). The p arameters yi and rr determine the phases and 
amplitudes of the two waves. 

The solution for the collision of the two solitons is 

u(x, t) = - 2(r: - rf) 
rg csch2 y2 + rf sech2 y, 
(r2 coth y2 - rl tanh y,)’ (9.2) 

at time t. The results of our computer simulations are consistent with the extensive 
work of others on the K-dV equation reported in the literature [4, 71. Thus, the 
K-dV equation has provided us with a test problem for the computer code. 

9.2. Solution of the K-P Equation 

We also applied the code with the Crank-Nicolson option to the K-P equation 
with initial conditions made up from an analytic solution provided by Segur and 
Finkel [S]. Their solution is for 

(u, + 3(u2)x + u.xxxL + 3u.w = 07 (9.3) 

a scaled version of the K-P equation (2.2). 
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Dubrovin [9] shows that Eq. (9.3) admits an infinite family of solutions of the 
form 

(9.4) 

where 0(4,, &; B) is a Riemann theta function of genus 2, provided that U(X, y, t) 
satisfies a certain relationship to be explained in the following paragraphs. As 
discussed below, Segur and Finkel took Dubrovin’s solution and developed an 
algorithm for computing solutions to Eq. (9.4) [IS, lo]. 

A Riemann theta function of genus 2 may be defined by the double Fourier series 

e(4,,h;B)= f f exp( &mTBm + im’#), (9.5) 
WI,= -00 m>= -cc 

where mT = (m,, m2) and B is a 2 x 2 symmetric, negative-definite Riemann matrix 

B= [i/l blil: d] (9.6) 

with parameters II # 0, b, and d [S]. The phase variable 4 is defined by 

4jiP,X+VjY+ojt+dj,0 (9.7) 

for j = 1, 2. The parameters ~,6r,~ and c#*,~ in Eq. (9.7) are the arbitrarily chosen 
initial phase shifts for the two waves. Define the theta constant O[p] as 

ml= f f expC(m + pJTBb + p)l, 
??I,= -cc rq= --3u 

where 

Thus, 9 is a four component vector indexed by the parameter p. 
The relationship that Eq. (9.4) must satisfy may now be stated as 

Mx = 4sv, 

where 

(9.8) 

(9.9) 

(9.10) 

(9.11) 
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4 
PI 

4P:(P*-&) 

u= 6dh-M2 , [ 1 (9.12) 

%(~~-h~)~ 

(P2-M4 

(9.13) 

and 

Thus, M is a 4 by 4 matrix and S is 4 by 5. D is a constant of integration. 
M is invertible [8] if and only if A # 0. Thus, the system of equations (9.10) can 

be solved for 
x=4M-‘Sv. (9.15) 

By neglecting the last row on the right hand side, the first three equations in the 
system (9.15) may be written as 

[ 

cl101 + 3v: 
~~(02-~~l)+(~~-;l~,)o,+6v,(v,-~v,) =4Mp’Sv 

I 

(9.16) 

b2 - Ah Nw2 - J-w I+ 3(v2 - TV,)* 

which contains eight free parameters: 6, d, I,, pl, pz, either v, or vz, and the phase 
translations #I,0 and &O. The last two, which contribute to Eq. (9.15) through the 
definition (9.7), have no dynamic significance. 

When values are chosen for 6, d, A, pL1, and p*, it remains to solve the system 
(9.16) for v, or v2, o,, and 02. To obtain a unique solution to the system (9.15), 
we may choose v,=O or v,= -v2. 

When v2 = 0, the system of Eqs. (9.16) becomes 

[ 

Plal+ 3v: 
~Lz(o~-~o,)+01(~~-~~,)-6v~ =4M-‘SV. 1 (9.17) 

(lu*-~“~u)(~2-~~,)+3(~v,)2 

Solving Eqs. (9.17) with the initial conditions 

pl = ,u2 = 0.25 

v2 = 0 

b= -1.0 

A=O.15 

b3u2+d= -1.0 

(9.18) 

B/9712-6 
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v1 = 0.5053 84141 0625 

co1 = -3.8416 21402 0425 (9.19) 

co*= -0.7766 63841 5928. 

To obtain a symmetric wave pattern, we require vi = - v2. In this case, the system 
of Eqs. (9.16) becomes 

Plol+ 3v: 
~L(02-~01)+(~2-~~,)w1-6v:(1-~) =4M~‘Su. 1 (9.20) 

(P2 - ~cLl)(~Z - LOI) + 3(1 + 4*v: 

Then the initial conditions 

pl = p2 = 0.25 

v, = -v* 

b= -1.0 

A=O.15 

bA*+d= -1.0 

determine the values 

v, = 0.2526 92070 53125 

o, = w2 = - 1.5429 03231 7052 

(9.21) 

(9.22) 

from the system (9.20). 
The two sets of values for the problem parameters provide us with two analytic 

solutions, defined by Eq. (9.4), with which to test the computer code. While the 
evaluation of the parameters in Eqs. (9.19) and (9.22) was done in double precision 
on a VAX 8700, the KPEQ code that implements the spectral method for the 
solution to the non-linear wave equations is written in single precision. 

Figure 9.2.1 shows the surface plot and a contour plot for initial conditions 
defined by Eq. (9.4) with the parametric values given by Eqs. (9.18) and (9.19). The 
computed solution from Eqs. (6.1), (6.2), and (6.3) on a 128 by 128 grid with R = 2 
at time t = 1.0 is shown in Fig. 9.2.2. The grid covers one period of the solution in 
the x direction and two periods in the y direction. The time step was At = 0.005 or 
200 time steps. Figure 9.2.3 shows the corresponding analytic solution. 

Similarly, the three figures 9.2.4, 9.2.5, and 9.2.6 show the initial conditions for 
Eq. (9.4) with Eqs. (9.21) and (9.22), the computed solution at time t = 1.0, and the 
corresponding analytic solution, respectively. 
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FIG. 9.2.1. When v,=O, the surface plot and a corresponding contour plot are shown for the 
function detined by Eq. (9.4) with parametric values given by Eqs. (9.18) and (9.19). 

FIG. 9.2.2. The computed solution for the propagation of the solitons in Fig. 9.2.1 is shown at time 
t= 1.0. 

. . 

FIG. 9.2.3. The analytic solution corresponding to the computed solution shown in Fig. 9.2.2 
illustrates the accuracy of the computational method. 
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FIG. 9.2.4. When v2 = -v,, the surface plot and a corresponding contour plot are shown for the 
function defined by Eq. (9.4) with parametric values given by Eqs. (9.21) and (9.22). 

FIG. 9.2.5. The computed solution for the propagation of the solitons in Fig. 9.2.4 is shown at time 
t= 1.0. 

FIG. 9.2.6. The analytic solution corresponding to the computed solution shown in Fig. 9.2.5 
illustrates the accuracy of the computational method. 
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The results of the computations were compared with the analytic solutions to 
Eq. (9.4) using the standard I,, norms over the spatial mesh corresponding to Z,, 
defined by Eq. (3.2). The relative errors, 

ERROR = ‘l~EXACr;,~~~=~,~EDll~, (9.23) 

were computed for p = 1, 2, CO. Figures 9.2.2 and 9.2.5 were compared with the 
analytic or exact solutions shown in Figs. 9.2.3 and 9.2.6, respectively. Figure 9.2.7 

Relative Error in the lp Norm ( x 10m2 ) 
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The maximum amplitude in absolute units ( x loo ) 
of the analytic solution at time t = 1.0 is 3.3410 for line 17 

and 3.2980 for line 21. 
FIG. 9.2.7. The relative errors defined by Eq. (9.23) indicate the accuracy of the computed solutions 

compared to the analytic or exact solutions as a function of the time step df and the number of 
predictor-corrector steps R which was described in Section 6. The line of data numbered 17 corresponds 
to the accuracy of the computed solution shown in Fig. 9.2.2 compared to the analytic solution in 
Fig. 9.2.3. Similarly, the line of data 21 corresponds to Figs. 9.2.5 and 9.2.6. 
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shows that the computed solution is in good agreement with the analytic solution 
to Eq. (9.4). 

The cpu time used by the VAX 8700 to generate the results on the 64 by 64 grid 
in Fig. 9.2.7 ranged from 2 min 55 s and 4 min 8 s for the first two items on the list 
to 10 min 59 s for dt = 0.004 and R = 3. The cpu time for generating the solution 
on the 128 by 128 grid was 26 min 10 s for item number 17 and 25 min 24 s for item 
number 21. 

The solutions shown in Figs. 9.2.1 through 9.2.3 and in Figs. 9.2.4 through 9.2.6 
correspond to items 17 and 21, respectively, in Fig. 9.2.7. The VAX FORTRAN 
routines LIB$INIT-TIMER and LIB$STAT-TIMER were called before and after, 
respectively, the integration loop in the KPEQ code. That is, the cpu times reported 
here include the single precision evaluation of the solution by the spectral method 
but exclude the cpu time for the double precision evaluation of the parameters and 
the single precision evaluation of the analytic solutions and calculation of the I, 
norms for the comparisons. 

The quadratic convergence of the computational method was established in 
Section 6. As an illustration of this convergence property, Fig. 9.2.8 shows a plot 
of the relative I, errors versus the square of the time step At for the solution with 
v2 = 0 shown in Figs. 9.2.2 and 9.2.3. This numerical error analysis shows that the 
computed solutions approach second-order accuracy in At as predicted. 

9.3. The Conservation Laws for the K-P Equation 
Solutions to the K-P equation (2.2) can be formulated in terms of the inverse 

scattering transform [IS]. Problems that are exactly solvable by dr*. This illustration of quadratic 
convergence is a plot of the data from the table in Fig. 9.2.7 for 

R = 2 and R = 3 with v2 = 0 on a 64 
by 64 grid. The corresponding solution on a 128 by 128 grid is shown in Figs. 9.2.2 and 9.2.3. 
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scattering transform posses an infinite number of conserved quantities [ 161. 
The first three conserved quantities for the scaled K-P equation (9.3) are 

c, = I_‘,, j_:, u dx dy, (9.24) 

c2 = jpmm JI, u2 dx dy, 
and 

(9.25) 

(9.26) 

where 

w,=uy. (9.27) 

Equations (9.24) and (9.25) are referred to as the conservation of momentum and 
energy, respectively [ 171. 

We verified the three conservation laws given above for both the non-symmetric 
case defined by vq = 0 and the symmetric case with v2 = -v,. The conservation of 
momentum is guaranteed by the dispersion relation in which 

qG: = $I, O), (9.28) 

since the first component of the discrete Fourier transform is a constant times the 
double sum of the solution over the grid in physical space. The relative errors 
between the conserved quantities (9.25) and (9.26) for the computed solutions and 
for the analytic solutions are shown in Fig. 9.3. Note that the results are com- 
parable to the errors in the solution itself as listed in Fig. 9.3. The method used to 
evaluate the expressions (9.25) and (9.26) was simply a double sum of the values 
of the integrands over the grid. The procedure was easy to implement for the 
conservation of energy. However, to evaluate U, in the expression (9.26) and uI 
for Eq. (9.27), we transformed the solution in and out of Fourier space where the 
differentiation with respect to y was performed. 

10. SUMMARY AND APPLICATIONS 

We have applied spectral methods to the analysis of nonlinear wave equations 
including the K-dV and the K-P equations. Excellent numerical results were 
achieved. The primary advantages of the spectral method include ease of coding 
and the characteristic exponential accuracy of the method. Even so, a large number 
of grid points was required to adequately represent the solutions. The periodicity 
imposed on the solutions by the use of the Fourier transform is a disadvantage of 
the method. 
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An interesting feature of the soliton interactions was reproduced in the numerical 
solution: The Fourier components ~(0, KY) of the initial values were at least five 
orders of magnitude smaller than the dominant components. That is, the initial 
conditions U(X, y, 0) approximately satisfy the compatibility condition 

u(0, K,,) = 0. 

We have analyzed iterative techniques, primarily a predictor-corrector 
implementation, for solving implicit time-stepping equations. The approach was 

Relative Errors in the Conservation Quantities ( x 10m3 ) 
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FIG. 9.3. The relative errors between the conservation quantities (9.25) and (9.26) for the computed 
solution and the analytic solution illustrate the accuracy of the method. The data in this table 
correspond to lines 3, 17, 15, and 21 in Fig. 9.2.7. 
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shown to be very efficient under mild restrictions on the spectral and temporal 
mesh sizes for the K-P ( + uY.“) equation. An interesting discovery (Theorem 5.1) is 
the asymmetry of the mesh-size constraint with respect to the two spectral variables 
for the K-P (+u,) equation. The result should not be surprising since the K-P 
equation was derived as a model for waves propagating primarily in one direction 
with only weak variation in the orthogonal direction [ 111. An important application 
of the K-P equation is modeling weakly two-dimensional, non-linear waves in a 
plasma such as the ionized gas in a laser-material interaction [12]. 

The techniques have been applied to initial conditions which are not analytic 
solutions to the equations. In particular, we have simulated the collision of solitions 
which initially were not interacting. A phase shift of the colliding solitons and an 
amplitue enhancement were observed in the interaction region [ 131. The model has 
also been used to simulate the propagation of a solition with a spatially modulated 
wave front [ 141. 

We are currently investigating a modified K-P equation with the quadratic non- 
linearity (u’),, replaced by a cubic non-linearity (u3),,. This equation describes the 
evolution of a non-linear ion-acoustic wave in a plasma of positive and negative 
ions [15]. Preliminary computer results for the K-P equation with the cubic non- 
linearity indicate unstable amplitude growth in the interaction region. Whether this 
instability is numerical, or inherent in the equation, or a result of unrealistic initial 
conditions we do not yet know. 
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